
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Efficient Name Generation Using the Boyer-Moore

Algorithm for Meaningful Combinations

Ellijah Darrellshane Suryanegara - 13522097

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): edarrell1202@gmail.com

Abstract— This paper explores the application of the

Boyer-Moore string matching algorithm in the context of

generating names with specific meanings. The Boyer-Moore

algorithm, known for its efficiency in string searching,

leverages two heuristics—the Bad Character Heuristic and the

Good Suffix Heuristic—to minimize the number of

comparisons required during the matching process. We

implement this algorithm to match user-defined keywords

against name descriptions stored in a database, aiming to

generate names that closely align with desired attributes such

as "Strength," "Love," "Hope," "Beauty," and "Wisdom."

Our results demonstrate that the Boyer-Moore algorithm's

ability to efficiently handle large datasets and perform quick,

accurate pattern matching makes it an ideal choice for

applications requiring high performance in text searching.

The generated names provide a meaningful and personalized

experience for users, showcasing the practical utility of

advanced string matching techniques in creative and data-

driven applications.

Keywords—Boyer-Moore Algorithm, String Matching, Pattern

Matching, Name Generation

I. INTRODUCTION

In the realm of computational linguistics and natural

language processing, the challenge of generating names with

specific meanings represents a fascinating intersection of

creativity and algorithmic precision. This paper delves into the

innovative application of string matching techniques to

generate names that embody predetermined semantic

attributes. The ability to generate meaningful names is not

only an intriguing problem from a theoretical standpoint but

also has practical implications in various domains, including

brand creation, character naming in storytelling, and

personalized content generation.

String matching, a fundamental concept in computer

science, involves the identification and comparison of

substrings within a larger string. Traditionally utilized for

tasks such as text searching and pattern recognition, string

matching algorithms have evolved to address more complex

linguistic challenges. By leveraging these advanced

algorithms, it is possible to systematically create names that

align with specific phonetic and semantic criteria. This paper

explores several methodologies, ranging from simple pattern

matching to more sophisticated techniques that incorporate

elements of machine learning and natural language

understanding.

The significance of generating names with specific

meanings extends beyond mere nomenclature. In branding, for

instance, a name that resonates with the intended message or

evokes particular emotions can greatly enhance a product's

marketability. Similarly, in literature and media, a well-chosen

name can add depth to a character, making them more

memorable and relatable to the audience. This paper aims to

demonstrate how string matching can be effectively employed

to automate the creation of such meaningful names, thereby

blending computational efficiency with the nuances of human

creativity. Through detailed analysis and practical examples,

we aim to showcase the potential of these techniques in

various applications, ultimately contributing to the broader

field of computational linguistics and creative automation.

II. THEORETICAL BASIS

A. String Matching

String matching is a fundamental concept in computer

science that involves finding occurrences of a substring (often

referred to as a "pattern") within a larger string (the "text").

This task is pivotal in various applications, including text

editing, search engines, DNA sequencing, and network

security. The primary goal of string matching is to efficiently

locate all instances where the pattern appears in the text.

At its core, string matching can be approached through

several algorithms, each varying in complexity and efficiency.

The most straightforward method is the naive algorithm,

which checks every possible position in the text to see if the

pattern matches. While easy to understand and implement, the

naive approach can be inefficient, especially for long texts and

patterns, as it requires a comparison at every character

position.

To address the inefficiencies of the naive algorithm, more

sophisticated techniques have been developed. One such

method is the Knuth-Morris-Pratt (KMP) algorithm, which

preprocesses the pattern to create a partial match table (also

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

known as the "prefix function"). This table is used to skip

unnecessary comparisons, thereby improving the search

efficiency. KMP's time complexity is linear in relation to the

length of the text and the pattern, making it significantly faster

than the naive approach for larger inputs.

Another prominent algorithm is the Boyer-Moore

algorithm, which preprocesses the pattern to generate two

heuristic tables: the "bad character" and "good suffix" tables.

These heuristics allow the algorithm to skip sections of the

text, jumping over characters that have already been

processed. Boyer-Moore is particularly efficient for longer

patterns and texts because it minimizes the number of

comparisons needed.

For more advanced and specific applications, such as

genomic sequencing, suffix trees and arrays are utilized. These

data structures provide a compact representation of all

possible substrings of a text, enabling extremely fast substring

searches. They are especially useful in scenarios where

multiple queries need to be performed on the same text.

B. Boyer Moore

The Boyer-Moore algorithm combines two powerful

techniques: the Bad Character Heuristic and the Good

Suffix Heuristic. These heuristics can be utilized

independently to search for a pattern within a text, but when

combined, they form a highly efficient algorithm. To

understand how these two independent methods work together

in the Boyer-Moore algorithm, it's helpful to compare it with

other string matching algorithms.

In contrast to the naive algorithm, which slides the pattern

over the text one character at a time, and the KMP algorithm,

which preprocesses the pattern to allow for shifts greater than

one, the Boyer-Moore algorithm also preprocesses the pattern.

It creates separate arrays for each of the two heuristics. During

the search process, the pattern is shifted by the maximum

distance suggested by either of the heuristics at each step. This

means that the Boyer-Moore algorithm uses the greatest offset

recommended by both heuristics to achieve efficient pattern

matching.

A unique feature of the Boyer-Moore algorithm is that it

starts matching the pattern from its last character rather than

the first. In this discussion, we'll explore the Bad Character

Heuristic, and the Good Suffix Heuristic will be covered in a

subsequent discussion.

Bad Character Heuristic

The Bad Character Heuristic is based on a straightforward

idea. The character in the text that does not match the current

character of the pattern is referred to as the Bad Character.

When a mismatch occurs, the algorithm shifts the pattern

according to one of two criteria:

a. Case 1 – Mismatch becomes a match

When a mismatch occurs, the algorithm looks up the

position of the last occurrence of the mismatched

character within the pattern. If the mismatched character

is present in the pattern, the pattern is shifted so that this

character in the text aligns with its last occurrence in the

pattern.

Image 1. Case 1 for Bad Character Heuristic in BM

In the above example, we got a mismatch at position 3.

Here our mismatching character is “A”. Now we will search

for last occurrence of “A” in pattern. We got “A” at position 1

in pattern (displayed in Blue) and this is the last occurrence of

it. Now we will shift pattern 2 times so that “A” in pattern get

aligned with “A” in text.

b. Case 2 – Pattern move past the mismatch character

Image 2. Case 2 for Bad Character Heuristic in BM

Here we have a mismatch at position 7. The mismatching

character “C” does not exist in pattern before position 7 so

we’ll shift pattern past to the position 7 and eventually in

above example we have got a perfect match of pattern

(displayed in Green). We are doing this because “C” does not

exist in the pattern so at every shift before position 7 we will

get mismatch and our search will be fruitless.

Good Suffix Heuristic

The Good Suffix Heuristic is another component of the

Boyer-Moore algorithm. Let's consider a substring ttt of the

text TTT that matches a substring of the pattern PPP. When a

mismatch occurs after this match, the pattern is shifted based

on the following criteria:

1. Align another occurrence of ttt in PPP with ttt in

TTT.

2. Align a prefix of PPP with the suffix of ttt.

3. Move PPP past ttt.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

a. Case 1 – Another occurrence of t in P matched with t

in T

The pattern PPP might have multiple occurrences of

ttt. In such scenarios, the algorithm shifts the pattern to

align the next occurrence of ttt in PPP with ttt in TTT.

For example:

Image 3. Case 1 for Good Suffix Heuristic in BM

In the above example, we have got a substring t of

text T matched with pattern P (in green) before mismatch

at index 2. Now we will search for occurrence of t

(“AB”) in P. We have found an occurrence starting at

position 1 (in yellow background) so we will right shift

the pattern 2 times to align t in P with t in T. This is weak

rule of original Boyer Moore and not much effective

b. Case 2 – A prefix of P, which matches with suffix of t

in T

It is not always likely that we will find the occurrence

of t in P. Sometimes there is no occurrence at all, in such

cases sometimes we can search for some suffix of t

matching with some prefix of P and try to align them by

shifting P. For example –

Image 4. Case 2 for Good Suffix Heuristic in BM

In above example, we have got t (“BAB”) matched

with P (in green) at index 2—4 before mismatch. But

because there exists no occurrence of t in P we will

search for some prefix of P which matches with some

suffix of t. We have found prefix “AB” (in the yellow

background) starting at index 0 which matches not with

whole t but the suffix of t “AB” starting at index 3. So

now we will shift pattern 3 times to align prefix with the

suffix.

c. Case 3 – P moves past t

If the above two cases are not satisfied, we will shift

the pattern past the t. For example –

Image 5. Case 3 for Good Suffix Heuristic in BM

If above example, there exist no occurrence of t (“AB”) in

P and also there is no prefix in P which matches with the

suffix of t. So, in that case, we can never find any perfect

match before index 4, so we will shift the P past the t ie. to

index 5. We’ll lookup the position of last occurrence of

mismatching character in pattern and if character does not

exist we will shift pattern past the mismatching character.

III. ANALYSIS AND IMPLEMENTATION

The name generator application described in the provided
code leverages the Boyer-Moore algorithm to match
meaningful keywords within name descriptions stored in a
database. The primary goal is to find and generate names that
closely align with the user-specified meanings.

Steps Involved:

1. Input Handling: The user inputs a desired meaning or set

of attributes (e.g., "Strength Love Hope Beauty Wisdom")

and specifies the gender of the names (male, female, or

unisex).

2. Tokenization: The input string is tokenized into

individual words, which are then used as search patterns.

3. Database Query: The application connects to a MySQL

database containing names and their corresponding

meanings. Depending on the specified gender, an

appropriate query is executed to fetch relevant name-

meaning pairs.

4. Pattern Matching: For each name-meaning pair retrieved

from the database, the Boyer-Moore algorithm is used to

count how many of the input words (patterns) are present

in the meaning.

5. Filtering and Combination: The results are filtered to

identify the names with the highest number of matching

patterns. The best three-word name combinations are then

generated based on these filtered results.

6. Output: The application outputs the names and their

meanings, highlighting those that most closely match the

desired attributes.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Breakdown

A. Bad Character Heuristic

Image 6. Bad Char Heuristic function

This function initializes a table with 256 entries (for

ASCII characters), setting each entry to -1. It then iterates

through the pattern, updating the table with the index of

the last occurrence of each character. This table is used to

determine how far to shift the pattern when a mismatch

occurs.

B. Boyer-Moore Search

Image 7. BM Search function

This function performs the Boyer-Moore search. It

initializes the length variables for the pattern and the text,

generates the bad character table, and sets the initial shift

(s) to 0. It then enters a loop to slide the pattern over the

text:

• Matching from the End: The algorithm starts

comparing characters from the end of the pattern

towards the beginning.

• Mismatch Handling: If a mismatch is found, the

shift is determined by the bad character heuristic. The

pattern is moved to align the mismatched character in

the text with its last occurrence in the pattern.

• Pattern Found: If the entire pattern matches the text,

the function returns True, indicating that the pattern

is found at the current shift position.

C. Count Matching Words

Image 8. Count Matching Words function

 This function iterates over each input pattern and uses

the Boyer-Moore search function to count how many of the

patterns are found in the text (name meaning). The total

count of matches is then returned.

D. Filter Words

Image 9. Filter Words function

This function connects to the MySQL database and

retrieves names and their meanings based on the specified

gender. It then uses the Boyer-Moore algorithm to count

the number of matching input words in each meaning. The

names with the highest number of matches are stored in a

results list.

Identify applicable sponsor/s here. If no sponsors, delete this text box

(sponsors).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

E. Generate Full Names

Image 10. Generate Full Names function

This function generates the final full names based on

the best-matching combinations. It filters the names using

the Boyer-Moore algorithm and then generates three-word

name combinations. It calculates the number of matches

for each combination's combined meaning and selects the

names with the highest number of matching attributes.

Test Cases

• Female

a. TC1

b. TC2

c. TC3

• Male

a. TC1

b. TC2

c. TC3

• Unisex

a. TC1

b. TC2

c. TC3

IV. CONCLUSION

The Boyer-Moore algorithm's integration into the name

generator application demonstrates its capability to efficiently

match patterns within large texts. By leveraging the bad

character and good suffix heuristics, the algorithm minimizes

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

unnecessary comparisons and accelerates the search process.

In this context, the algorithm is used to identify names that

closely align with user-defined meanings, resulting in a more

personalized and meaningful name generation process. This

approach highlights the versatility and efficiency of the Boyer-

Moore algorithm in real-world applications, particularly in

tasks involving large datasets and the need for rapid, accurate

pattern matching

V. ACKNOWLEDGMENT

I am profoundly grateful to God Almighty, creator of the

universe, for His guidance throughout the journey of crafting

this paper. I would also like to express my sincere gratitude all

the following individuals who have played pivotal roles in the

completion of this paper:

1. Dr. Ir. Rinaldi Munir, M.T., my dedicated class

professor and course coordinator, whose guiding and

syllabus have been instrumental in providing

invaluable insights that helped put the trajectory of

this research endeavor on course.

2. My esteemed colleagues of IF'22, whose collaborative

spirit and shared enthusiasm fostered an enriching

academic environment, stimulating meaningful

discussions and enhancing the overall research

experience.

3. Last but not least, my heartfelt appreciation goes to

my parents for their enduring support, encouragement,

and understanding. Their unwavering belief in my

academic pursuits has been a constant source of

inspiration, and I am truly grateful for their love and

encouragement throughout this academic journey.

VI. REFERENCES

[1] GeeksForGeeks, Boyer Moore Algorithm | Good Suffix heuristic.
October 2023. Accessed through https://www.geeksforgeeks.org/boyer-
moore-algorithm-good-suffix-heuristic/ on June 11th, 2024.

[2] GeeksForGeeks, Boyer Moore Algorithm for Pattern Searching. March
2024. Accessed through https://www.geeksforgeeks.org/boyer-moore-
algorithm-for-pattern-searching/ on June 11th, 2024.

[3] GeeksForGeeks, Boyer Moore Algorithm for Pattern Searching. March
2024. Accessed through https://www.geeksforgeeks.org/boyer-moore-
algorithm-for-pattern-searching/ on June 11th, 2024.

[4] Munir, Rinaldi, Pencocokan String (String/Pattern Matching). Institut
Teknologi Bandung, 2021. Accessed through
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf on June 11th, 2024.

[5] https://www.momjunction.com/baby-names as data source. Accessed on
June 12th, 2024.

LINK OF GITHUB AND YOUTUBE

https://github.com/HenryofSkalitz1202/NameGenerator

https://youtu.be/77bVz15UyM4

STATEMENT OF ORIGINALITY

I hereby declare that this paper is an original composition of

my own, not of any adaptation or translation from the authored

works of others, and free from plagiarism.

Bandung, 12 Juni 2024

Ellijah Darrellshane Suryanegara

13522097

https://www.geeksforgeeks.org/boyer-moore-algorithm-good-suffix-heuristic/
https://www.geeksforgeeks.org/boyer-moore-algorithm-good-suffix-heuristic/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://www.momjunction.com/baby-names
https://github.com/HenryofSkalitz1202/NameGenerator
https://youtu.be/77bVz15UyM4

